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Abstract

We consider the flow of a thin layer of incompressible fluid on a rotating sphere, bounded internally by the surface of
the sphere and externally by a free surface. Progressive-wave solutions are sought for this problem, without tangent plane
simplifications. A linearized theory is derived for small amplitude perturbations about a base westerly flow field, allowing
calculation of the linearized progressive wavespeed. This result is then extended to the numerical solution of the full model,
to obtain highly non-linear large-amplitude progressive-wave solutions in the form of Fourier series. A detailed picture is
developed of how the progressive wavespeed depends on wave amplitude. This approach reveals the presence of non-linear
resonance behaviour, with different disjointed solution branches existing at different values of the amplitude. Additionally,
we show that the formation of localized low pressure systems cut off from the main flow field is an inherent feature of the
non-linear dynamics, once the amplitude forcing reaches a certain critical level.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Since the classic paper by Rossby [1], proving the existence of large scale planetary waves in the atmosphere,
there has been much interest in understanding these so-called Rossby waves. In particular, how Rossby waves
influence the global circulation of the atmosphere has been the focus of a wide body of research over the past 60
years and it has been suggested by Lorenz [2], and later supported by Lilly [3], that the dynamical stability of
Rossby waves might impose a limit on the overall numerical predictability of the global circulation.

Traditionally, almost all analytical and numerical analysis of planetary waves has been carried out either on
a localized tangent plane to a sphere, the b-plane, or else with a simplified set of governing equations for the
full spherical geometry. The benefits of these two approaches are that the recovery of closed form wave solu-
tions to the equations under consideration is often possible, of which the wave forms found by Haurwitz [4]
and Longuet-Higgins [5,6] are classic examples. The present paper, following work first introduced by Haur-
witz [4], makes no tangent plane simplifications and also uses the shallow water equations for a thin layer of
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incompressible fluid with a free surface on a rotating sphere. The aim is to incorporate the spherical geometry
in the governing dynamics.

The shallow water equations have been used extensively in dynamic meteorological modelling. The paper
by Williamson et al. [7] has subsequently generated a large literature of papers using the shallow water equa-
tions as a basic test bed for fast global atmospheric solver algorithms. Their test case 6 employs the Rossby–
Haurwitz wave, with parameters similar to those first used by Phillips [8], to initialize the flow state which is
subsequently computed at later time steps. While the Rossby–Haurwitz wave is useful here as a flow initializer
it is important to remember that it is not an exact analytical solution of the full non-linear shallow water equa-
tions. Indeed, there is numerical evidence by Thuburn and Li [9] that the zonal wavenumber 4 Rossby–Haur-
witz wave is dynamically unstable and will eventually break down as the result of an initial perturbation. This
agrees in general with previous work conducted by Hoskins [10] and Baines [11] who both found maximum
amplitudes beyond which instability of Rossby–Haurwitz waves subject to perturbations was observed. All
these results serve to highlight the fact that Rossby–Haurwitz waves, while analytic solutions of the barotropic
vorticity equation, are not true solutions of the shallow water equations on a sphere.

Another possible source of instability for Rossby waves could be the presence of non-linear resonances, as
certain key parameters are changed. Resonances are known in the water-wave literature, and are characterized
by the presence of two or more solution branches in close proximity. Resonances in large-amplitude free-
surface waves were apparently first encountered by Wilton [12], in the context of gravity-capillary waves.
Schwartz and Vanden-Broeck [13] and Hogan [14–16] subsequently showed that the small divisors in Wilton’s
resonant solutions are indeed associated with multiple solution branches. Forbes [17,18] encountered a similar
phenomenon in waves beneath a floating elastic ice sheet.

In the meteorological context, non-linear resonance behaviour has been studied by Longuet-Higgins and
Gill [19], who showed that long-term resonant interactions can exist between three waves, termed a resonant
triad. They found an algebraic relationship relating the individual wavenumbers, associated with each physical
dimension, and corresponding wavespeeds; their results are concerned with planetary waves both on the
b-plane and more generally on a spherical surface. The instabilities found by both Hoskins [10] and Baines
[11] extended this work by calculating amplitudes required for instability based on triad interactions for spe-
cific types of Rossby–Haurwitz waves. Thus, small perturbations to a Rossby–Haurwitz wave which has been
used to initialize a numerical solution of the shallow atmosphere equations, could cause the wave to fluctuate
between one solution branch and another in an unpredictable fashion, or break down structurally altogether.

In this paper, we extend the above literature by finding numerical solutions of the shallow water equations
in the form of progressive waves that propagate in time without change of shape. In Section 2 we present the
governing dynamical equations in dimensionless form, and a linearized model of small amplitude progressive-
wave solutions to these equations is derived in Section 3. The collocation-Galerkin method for the solution of
the fully non-linear system is outlined in Section 4, and results are presented, with an emphasis on wavespeed–
amplitude relationships, in Section 5. A brief summary and discussion in Section 6 concludes the paper.

2. The governing equations

2.1. Equations of motion

The standard dimensional shallow water equations without topography are
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where (k,/, t) are longitude, latitude and time, (uk,u/) the corresponding velocity components, h the layer
depth, a the radius of the sphere and g the gravity acceleration. The Coriolis term f is given by f = 2X sin/
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where X is the rotation rate of the sphere. These are well known as a simplified dynamical system that qual-
itatively mimics some aspects of real atmospheric flow (see, for instance, Gill [20]).

In so far as we are only concerned with progressive wave structures in the current work, we define a coor-
dinate transform given by
g ¼ k� ct. ð4Þ
The second term �ct in (4) merely translates any initial wave structure towards the East (c > 0) or West (c < 0)
with constant angular speed c. Reference scales vref, href and cref are introduced as representative characteristic
values of the speed, fluid depth and progressive angular wavespeed, respectively. The dynamical equations are
then non-dimensionalized, in a manner similar to that adopted by Klein [21], so that the complete non-linear
system in spherical component form is given by
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where all field variables are now non-dimensional and will remain so for the rest of the paper. The three
dimensionless numbers Sr, Ro and Fr are the familiar flow regime parameters from fluid dynamics and are
given as
Sr ¼ acref

vref

Strouhal number;

Ro ¼ vref

2Xa
Rossby number;

Fr ¼ vrefffiffiffiffiffiffiffiffiffi
ghref

p Froude number.
Eqs. (5)–(7) constitute the non-dimensional form of the shallow water equations that will be used as the basis
of the dynamics in this paper.

2.2. Volume specification

In addition to the mass Eq. (5) and the two momentum equation components (6) and (7), it is also necessary
to specify the total mass of the atmosphere. As this is an incompressible theory, this condition is equivalent to
imposing the total volume Vb of the atmosphere. We now prescribe that there are exactly j wavelengths in
longitude around each latitude circle. The desired volume V of the atmosphere is now specified by integrating
the region contained between the radial surfaces r = a and r = a + h(g,/) in a spherical coordinate system.
Thus, we have
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which, after taking symmetry into account, may be simplified at once to give
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Here, â is the dimensionless form of the sphere’s radius, scaled relative to href (i.e., â = a/href). The volume
specification condition is now written in the form
1� V
V b

¼ 0. ð9Þ
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The complete specification of a non-linear progressive Rossby wave in this model consists of solving (5)–(9)
subject to some condition defining the amplitude of the wave. The particular form of the amplitude forcing
will be discussed in Section 4.

3. Linearized theory – small amplitude waves

3.1. Linearization

In this section we present a linearized solution for the progressive wavespeed, based on small amplitude
perturbations of a base eastward flow field. This is of interest in its own right, and will also guide the numerical
solution of the full non-linear problem to be discussed in Section 4. Although the literature contains lineari-
zations of the shallow water equations about quite general base flow representations (see, for example, Kasa-
hara [22]), we will restrict our discussion to a specific type of base flow. Following the work of Haurwitz [4] we
introduce a zonal flow in the form of a super rotation that only depends on latitude /. Putting uk = ukz = x
cos/ and u/ = u/z = 0 into (5)–(7) yields a differential equation for the zonal free surface height which is easily
integrated to give
hz ¼ ho þ
xFr2

2

1

Ro
þ x

� �
cos2 /; ð10Þ
where ho is the dimensionless polar free surface height, x is the dimensionless angular speed of the base zonal
flow, and the additional subscript z denotes field variables belonging to the zonal flow structure.

We now assume that the flow may be regarded as a small O(�) perturbation of the base zonal flow state, so
that the velocity components and free surface height may be written in the form
ukðg;/Þ ¼ ukz þ �uk1ðg;/Þ þOð�2Þ; ð11Þ
u/ðg;/Þ ¼ 0þ �u/1ðg;/Þ þOð�2Þ; ð12Þ
hðg;/Þ ¼ hz þ �h1ðg;/Þ þOð�2Þ. ð13Þ
Here � can be thought of as a small parameter representing Rossby wave amplitude. Eqs. (11)–(13) are substi-
tuted into (5)–(7) and the set of equations are taken to O(�), following well-known techniques in perturbation
theory (see, for example, Van Dyke [23]). The solution of the resulting system is facilitated by noting that we
may write each of the O(�) perturbation terms as the product of a single Fourier mode in g with some function
of /. Thus we define
uk1ðg;/Þ ¼ cosðjgÞKð/Þ; ð14Þ
u/1ðg;/Þ ¼ sinðjgÞUð/Þ; ð15Þ
h1ðg;/Þ ¼ cosðjgÞHð/Þ; ð16Þ
where the parity of the Fourier basis in g in each term is chosen to preserve the parity of each of the dynamical
Eqs. (5)–(7). Also note that the parameter j, defined previously, has been introduced as a way of specifying the
longitudinal wavenumber. This is a natural addition to the model since intuitively we would expect that the
wavespeed c will depend on the number of equally spaced wavelengths around a latitude circle. By defining
the O(�) terms according to (14)–(16) we remove the g dependence entirely from the partial differential equa-
tions, transforming them into a set of ordinary differential and algebraic equations given by
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3.2. Numerical solution approach

Solutions of (17)–(19) are sought in the form of truncated Fourier series with specific symmetry conditions.
We restrict the set of possible solutions to those that have uk and h symmetric and u/ anti-symmetric with
respect to the equator (/ = 0). Additionally we require that uk and u/ are zero at the poles, while h needs
to be constant at the poles (/ = ±p/2). An instance of functions that fulfil these prescribed conditions can
be given by
Kð/Þ ¼
XN

n¼1

P j;n cosðð2n� 1Þ/Þ; ð20Þ

Uð/Þ ¼
XN

n¼1

Qj;n sinð2n/Þ; ð21Þ

Hð/Þ ¼
XN

n¼1

Hj;nð�1Þn cosð2n/Þ þ cosð2ðn� 1Þ/Þ½ �; ð22Þ
where Pj,n, Qj,n and Hj,n are the series coefficients, subscript j on each coefficient denotes the longitudinal
wavenumber, and N is a positive integer truncation level. Note that in this analysis the meridional velocity
is constrained to vanish at the poles for all positive values of j, hence j = 1 will not be considered in this
manuscript since this case corresponds to flow over the poles and the above basis set would not be suf-
ficient to describe these motions. The particular form of (22) involves basis recombination, and requires
further explanation. Observe first that the free-surface height h(g,/) in (13) is only required to be constant
at the poles, with height ho given in (10). Thus Hð/Þ ¼ 0 at the poles. However, symmetry requires Hð/Þ
to be even, so that a Fourier series involving cos(2n/) terms is needed, and these attain the values ±1 at
the poles. Therefore, in order to make Hð/Þ zero at / = ±p/2, the rearrangement shown in (22) is
necessary.

A standard Galerkin method is now used to determine the wavespeed c and associated coefficients Pj,n, Qj,n

and Hj,n. Series (20)–(22) are substituted into each of (17)–(19) and the resulting equations are multiplied by
suitable base expansion functions, integrated over �p/2 6 / 6 p/2 and equated to zero. Specifically, (17) is
multiplied by cos((2j � 1)/) for j = 1,2, . . . ,N, (18) is multiplied by cos(2j/) for j = 0,1, . . . ,N � 1, and (19)
is multiplied by sin(2j/) for j = 1,2, . . . ,N. The well-known orthogonality properties of trigonometric func-
tions then lead to a matrix system of 3N equations. The full set of equations is too lengthy to give here,
but significantly it may be expressed in the generalized eigenvalue form
Ax ¼ cBx; ð23Þ

where A and B are constant matrices corresponding to the left and right-hand sides of each of the algebraic
equations obtained from orthogonality. The eigenvalue c is precisely the wavespeed for the progressive Rossby
wave, and vector x is the eigenvector of unknown linearized coefficients, which is defined as
x ¼ ½Hj;1; . . . ;Hj;N ; P j;1; . . . ; P j;N ;Qj;1; . . . ;Qj;N �
T. ð24Þ
We note that the general structure of both A and B is that of banded diagonal matrices with A also containing
banded sub and super-diagonal components. In particular we note that diagonal matrix B consists of non-zero
elements along the main diagonal and thus will be invertible, implying that it will always be possible to find
solutions of the generalized eigensystem, provided B�1A is non-singular.

3.3. Model parameters

We now specify the particular values for the dimensionless parameters in the model. Although this
analysis is not specific to a given sphere size or mass it seems reasonable to use parameters that closely
approximate those of the Earth so that direct comparison can be made between the present model and
other published results. With this in mind we adopt the following values for the sphere specific
parameters:
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a ¼ 6:37122 � 106 m; ð25Þ

X ¼ 2p
24� 3600

� 7:272� 10�5 s�1; ð26Þ

g ¼ 9:80616 m s�2. ð27Þ
Additionally we define each characteristic reference scale as
vref ¼ 40 m s�1; ð28Þ
href ¼ 8:0� 103 m; ð29Þ

cref ¼
X
30
� 2:4241� 10�6 s�1; ð30Þ
so that the Strouhal, Froude and Rossby numbers are given by
Sr � 3:8611� 10�1; ð31Þ
Fr � 1:4281� 10�1; ð32Þ
Ro � 4:3166� 10�2. ð33Þ
The small value of Ro is in agreement with the definition of large scale flow (see, e.g. Pedlosky [24]) so that we
can expect the Earth’s rotation to be an influential factor determining the nature of any calculated solution.
This is precisely the kind of behaviour we seek, since we require flows in which the dominant driving force
sustaining any initial perturbation is highly dependent on the large scale nature of the flow, as first demon-
strated by Rossby [1].

For the dimensionless zonal flow parameters we choose values that are consistent with those documented in
the test set of Williamson et al. [7]. The equivalent non-dimensional values for ho and x are ho = 1 and
x = 1.25. The particular value of x is obtained by noting that Williamson et al. use a dimensional value
for x of 7.848 · 10�6 s�1, a value first introduced by Phillips [8]. In order to convert this to a dimensionless
number it is necessary to multiply by the radius of the Earth and divide by the reference velocity scale so that
x ¼ 7:848� 10�6a
vref

� 1:25. ð34Þ
Although (34) is only a single value of the dimensionless zonal flow angular speed, the analysis presented here
permits a wide variety of values for x, anticipating the strong dependence of the non-linear solution on x to be
discussed in Section 5.

It is also necessary to specify a base volume Vb for the system, to be used in the volume specification Eq. (9).
For this study the value for Vb was chosen to be the total volume contained between the surface of the sphere
and the free surface shape defined by the zonal flow with parameters ho = 1 and x = 1.25. Thus the base vol-
ume is simply the total volume of the atmosphere corresponding to purely zonal flow with parameters equiv-
alent to those used in Williamson et al. [7]. Since the linearized waves are effectively perturbations of the zonal
flow, we need only match the volumes for each underlying zonal flow state because in the limit as �! 0 the
flow will reduce to this form.

The zonal flow is specified uniquely by the two parameters ho and x; hence the volume matching condition
in the linearized case is equivalent to fixing x and calculating the new polar height ho that satisfies (9). This
reduces to solving a cubic equation for ho each time a new value of x is specified, for the linearized theory. For
the present purposes, the formula for the one real root of a cubic equation was used to solve for ho (see, e.g.
Abramowitz and Stegun [25]). Note that this implies an upper limit on the zonal flow angular speed, since the
polar height ho must decrease as the super-rotation rate increases, when volume remains fixed. An upper
bound is therefore required for x, to prevent ho from becoming negative.

The solution of the generalized eigenvalue problem was achieved by implementing a MATLAB script that
assembled the left and right hand side matrices and then solved the resulting system by using the inbuilt rou-
tine eig(A,B) to find the eigenvalues and corresponding eigenvectors. All computations were performed on
an AMD Athlon(tm) XP 1800+ processor clocked at 1.54 GHz with 512 MB of physical memory. Various
truncation levels were chosen to check convergence of the algorithm and in all cases rapid convergence was
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observed for increasing N. Typically a truncation value of N = 10 was all that was required to establish the
solution to 4 or 5 significant figures, when compared to higher truncation level solutions, and a truncation
level of N = 100 could almost be deemed excessive if not for the very small computational times involved;
approximately 3 s was required to compute all 300 eigenvalue–eigenvector pairs when N = 100.

4. Non-linear theory – large amplitude waves

4.1. Numerical solution method

Solutions of the fully non-linear equations given in (5)–(7) are sought using Fourier series with similar sym-
metry conditions imposed on the field variables as in Section 3.2. Additionally, it is no longer possible to use
the constant of integration ho as a zonal flow parameter because ho effectively controls the free surface height
at the poles, and in the non-linear model there is no way of knowing what this height will be prior to a com-
putation. Instead, the polar height becomes an output of the model and is determined by finding h(g,/) that
solves (9) for a given value of Vb.

Taking symmetry and polar no-flow conditions into account, the series for the present unsteady progressive
Rossby waves, using longitudinal truncation M and latitudinal truncation N, can be given by:
ukðg;/Þ ¼ x cos /þ
XM

m¼1

XN

n¼1

P m;n cosðjmgÞ cosðð2n� 1Þ/Þ; ð35Þ

u/ðg;/Þ ¼
XM

m¼1

XN

n¼1

Qm;n sinðjmgÞ sinð2n/Þ; ð36Þ

hðg;/Þ ¼
XN

n¼0

H 0;n cosð2n/Þ þ
XM�1

m¼1

XN

n¼1

H m;n cosðjmgÞð�1Þn½cosð2n/Þ þ cosð2ðn� 1Þ/Þ�. ð37Þ
Here, (37) again uses basis recombination to satisfy conditions that the free surface height be an even function
and constant at the poles. The series (35) for uk now contains the primary zonal flow velocity component. In-
stead of specifying the polar free surface height we replace ho with the single summation term in (37) to allow
the polar height to be determined from the output of the model, as discussed previously. Observe also that the
surface elevation h(g,/) in Eq. (37) is the only expression for which it is appropriate to include the m = 0
wavenumber mode. This is because of the need to specify the super-rotation term xcos/ uniquely in Eq.
(35) (to avoid an over-determined system), and to enforce the odd symmetry in Eq. (36). As a result, one fewer
azimuthal mode m can be determined numerically in Eq. (37) if each series is to have exactly M · N unknown
coefficients.

To close the system of equations it is necessary to specify either the amplitude, denoted A and defined later
in Section 4.2, in terms of one of the unknown coefficients, or the wavespeed c. To this end H1,1 in the series for
h(g,/), or the wavespeed c, is fixed prior to computation, thus removing one of the unknowns from the prob-
lem. The majority of computations were performed by specifying H1,1, and the second technique of specifying
c was reserved for cases where two or more solutions were possible with the same amplitude.

The general solution process consists of finding the set of coefficients Hm,n, Pm,n, Qm,n and wavespeed c that
make the series (35)–(37) a solution of the dynamical system described by (5)–(9). The technique chosen to
accomplish this task for the current work is the pseudospectral technique of collocation in which we require
the residuals, obtained by substituting the series into the governing equations, to be zero at every point on a
mesh constructed from a finite number of points in the flow field (see, e.g. Duran [26]).

For the collocation points in / we restrict computation to the Northern hemisphere since the solution has
specific symmetry relative to the equator. In addition, strictly internal points from the domain are chosen,
since the specific choice of the basis functions for each series imposes boundary conditions at both / = 0
and / = ±p/2. Defining
D/ ¼ p
2ðN þ 1Þ ð38Þ
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to be the inter-grid point distance in the / direction, the N equally-spaced /-grid points are
/i ¼ iD/; for i ¼ 1; 2; . . . ;N . ð39Þ
The collocation points in g can be obtained in a similar manner; however, since we have stipulated a depen-
dence on the wavenumber j, we are only free to choose collocation points from g 2 [0,p/j), to avoid linearly
dependent rows in the residual vector and resulting Jacobian matrix. This also accounts for the fact that the
Rossby wave is symmetric about its mid-line g = p/j. Defining
Dg ¼ p
Mj

ð40Þ
to be the inter-grid point distance in the g direction, the M equally spaced g-grid points are
gj ¼ ðj� 1ÞDg; for j ¼ 1; 2; . . . ;M . ð41Þ
The set of points taken from all possible (gj,/i) pairs constitutes the collocation mesh. Note that we have im-
posed upper limits on i and j in Eqs. (39) and (41) so that the number of grid points in the collocation mesh is
equal to the number of unknown coefficients, thus establishing a connection between the collocation mesh and
the series coefficients.

Evaluating each of the three governing Eqs. (5)–(7) at each of the collocation mesh points and computing
the volume specification condition (9) yields a vector of residuals, denoted ~Eð~xÞ, of length 3MN + 1, where~x is
a vector comprised of the wavespeed (if it is not the forcing term) and the unknown coefficients. A damped
Newton–Raphson method (see, e.g. Press et al. [27]) is then used to solve the resulting algebraic system, which
has the general form
~Eð~xÞ ¼~0. ð42Þ

Specifically, an initial guess at the vector of unknowns~xðkÞ is defined, where the superscript k denotes the cur-
rent iterative step. An updating direction ~dxðkÞ is then computed as the solution of the linear system
J ðkÞ~dxðkÞ ¼ �~Eð~xðkÞÞ; ð43Þ

where J(k) is the Jacobian matrix of partial derivatives of the components of the residual vector ~Eð~xðkÞÞ. Once
the updating direction is determined, the solution vector is corrected using
~xðkþ1Þ ¼~xðkÞ þ ~dxðkÞ ð44Þ

and the process is then repeated, starting from the new point~xðkþ1Þ, until Eq. (42) is satisfied to within a pre-
scribed error tolerance. The Jacobian matrix, which is required to compute the updating vector in (43), is cal-
culated analytically in this study, since the Jacobian elements are, in general, easily determined. Additionally,
the magnitude of the total residual error, which is used in assessing the convergence of a solution, is computed
using the L1 norm (the sum of absolute values).

The starting guess at the set of unknowns~x in the Newton–Raphson method is initially determined from the
corresponding linearized solution for the same values of j, x and V, given in Section 3. Once a small ampli-
tude non-linear solution has been determined, it is then used as the basis for the next solution to be computed
but with an increased value, as a small percentage of the previous solution value, of either c or H1,1, depending
on the type of forcing. This bootstrapping procedure forms the basis of mapping the wavespeed versus ampli-
tude relationship incrementally.

Computational efficiency is achieved by caching each of the basis functions and their derivatives with
respect to g and / at each of the collocation mesh points; this approach reduces the computational over-
head incurred by repeated function calls to the trigonometric functions. The integral appearing in (8) is
evaluated using numerical quadrature. The particular algorithm used is that of adaptive Lobatto quadra-
ture, with Kronrod extension of the Gauss–Lobatto formula, as detailed in Gander and Gautschi [28]. The
majority of computations were performed on two separate computers, the first being an AMD Athlon(tm)
XP 1800+ processor clocked at 1.54 GHz with 512 MB of physical memory, the second being an Ath-
lon(tm) XP 2800+ processor clocked at 2.08 GHz with 1 GB of dual channel physical memory.
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4.2. Amplitude measurement

In order to investigate the relationship between the progressive Rossby wavespeed and amplitude, we
require a means of defining the amplitude A of a particular Rossby wave. For a simple periodic wave, the
amplitude can be defined as the maximum deviation from the mean position to an extreme point. The problem
of measuring Rossby wave amplitude horizontally on a sphere is somewhat more complicated and arbitrary,
however. Due to the multitude of wave shapes that are possible, there are an infinite number of mean states
about which we can measure wave deviation. We must therefore decide on which one is appropriate to use.
Because Rossby wave activity is predominantly associated with the mid-latitude regions, and also because
/ = ±p/4 represents the mid-point between the equator and either pole, we choose the mean reference level
as the latitude circle located 45� from the equator in either hemisphere.

In this context, progressive Rossby waves are perturbations from a base zonal westerly flow, for which the
height contours of (10) would simply be circles of constant /. The unperturbed free-surface height contours at
/ = ±p/4 are taken here as the base level, against which Rossby wave amplitudes are measured.

Observe that the amplitude will not be the same in both the equator-ward and pole-ward directions, and the
difference between the two will increase as the overall wave amplitude grows. Because of the geometry of the
sphere it is possible for a Rossby wave to extend further towards the equator than towards the pole where the
lines of longitude converge. Thus to record A effectively we need to measure both the equator-ward and pole-
ward deflections, which we denote Ae and Ap, respectively. Associated with these separate but related ampli-
tudes we define a simple averaged amplitude, the mean of the two values, to be
Aave ¼
Ae þAp

2
. ð45Þ
To actually compute these amplitudes it was necessary to first solve for the series coefficients and then use
MATLAB to generate a high density map of the free surface contours. The deformed contour corresponding
to the originally unperturbed / = p/4 contour level was then located and used to determine the maximum
equatorial and poleward deviations of the contour about the / = p/4 latitude circle. A MATLAB script
was written to specifically accomplish this task.

When we present specific results in Section 5.2 we will plot the wave speed c versus each of the above
defined amplitudes, namely Ae, Ap and Aave. It is important to emphasize that these definitions of amplitude
measurement are somewhat arbitrary, although they are a useful way of quantifying transverse amplitudes on
a spherical surface.

4.3. Model parameters

The parameters and constants for the model are again chosen to approximate those of the Earth, as in Sec-
tion 3.3. Specifically, the parameters a, X and g, as well as the three reference scales vref, href and cref are given
by (25)–(30), respectively. For the dimensionless zonal flow parameter x we use two specific values. In the lin-
earized model it is possible to specify a broad range of x values with little overhead incurred in terms of time
taken to perform numerical calculations. Unfortunately, in the non-linear model, we are no longer able to
investigate the solution dependency on x without incurring a significant increase in the computation time.
This is because at each value of x chosen a complete solution curve for the c versus A relationship must
be computed, which involves many possible values of the wavespeed, rather than the single value computed
in the linearized model. On average, to compute a complete solution curve at a reasonable truncation level
for a fixed value of x, many weeks of computational time was required for programs executing on the previ-
ously documented hardware specifications in Section 4.1.

For this reason it was decided to focus attention on two specific values of the parameter x. The first value is
consistent with the angular speed x used in the test set proposed by Williamson et al. [7]. The second value,
chosen to be 80% of the first value, provides a slower and perhaps physically more realistic value for the super
rotation rate. In dimensionless form the two values are given by
x1 ¼ 1:25; ð46Þ
x2 ¼ 1:0. ð47Þ
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It is also necessary to specify a base volume Vb for the system, to be used in the volume specification equation
given by (9). For this study the base volume is simply the total volume of the atmosphere corresponding to
purely zonal flow with parameters equivalent to those used in Williamson et al. [7], as in the linearized solution
approach of Section 3.3.

5. Presentation of results

5.1. Linearized solution results

Although the linearized eigensystem (23) has 3N eigenvalue–eigenvector pairs for integer truncation N, in
this study we are only concerned with the fundamental solution of the system. Physically, this represents the
longest wavelength linearized solution, rather than higher-order harmonics. To provide evidence supporting
the accuracy of the linearized solutions computed, it is useful to make a comparison between these solutions
and the equivalent corresponding Rossby–Haurwitz solutions. It is useful to do this because, although the
mathematical descriptions for each model differ, they both model the same fundamental process and both
models assume a base zonal super rotation from which waves are perturbed about. To make the comparison
we make use of the wavespeed formula derived by Haurwitz [4]. The particular formula is given by
Fig. 1.
shown
c ¼ jð3þ jÞx� 2X
ð1þ jÞð2þ jÞ ð48Þ
which has been rewritten to reflect the naming conventions and variable names used in this work. Note that
this equation clearly shows a linear relationship between c and x. In addition, the Haurwitz model has no
provision for fixing the volume Vb of the atmosphere, since it does not assume the presence of a free surface
for the atmosphere. Consequently, differences are to be expected between that model and the work presented
here.

To compare the two solution types we consider the fundamental eigenvalues for j = 3, 4 and 5 with the
equivalent Rossby–Haurwitz solutions over a range of allowable x values. Fig. 1 shows the results of this com-
parison, with the solid lines representing the equivalent Rossby–Haurwitz solution for j = 3–5 from bottom to
top, respectively. Dimensionless units are assumed in this figure, corresponding to parameters appropriate to
the Earth, as explained in Section 3.3. The original dimensional angular speeds and wavespeeds may therefore
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be obtained from Fig. 1 simply by multiplying values on the horizontal and vertical axes by the quantities vref/
a = 6.278 · 10�6 rad s�1 and cref = 2.4241 · 10�6 s�1, respectively.

In general one can conclude that the two models are in good broad agreement, especially so for values of x
in the range 0 < x < 2 where the effect of the volume matching is minimal. Note that for each of j = 3, 4 and 5
there is a value of x for which c = 0, so that the linearized Rossby wave structure remains stationary relative
to the Earth’s surface. For values of x below this critical value we have wave motion towards the West
whereas for values higher we have Eastward wave motion, allowing for a wide variety of atmospheric config-
urations. Note that the bending over of the linearized solutions for large values of x is a consequence of the
fact that the height at the poles, ho, is changing to conserve the total volume, as previously discussed.

It is also useful to examine the resulting free surface contours produced by both models. In order to match
the height contour levels it necessary to specify some equivalent value of the wave amplitude �. To make com-
parison possible we choose to match the two height fields at (g,/) = (0,p/4) which represents a reasonable
mid-point level in each contour set. It is interesting to note that despite the fact that Haurwitz did not use
a free surface formulation, a resulting height field may be calculated via an analysis of the pressure field by
noting that pressure is converted into an equivalent free surface height under hydrostatic assumptions, as
developed by Phillips [8].

Figs. 2 and 3 provide a solution comparison both qualitatively, through a visual comparison, and quanti-
tatively, through the specific contour levels of each height field. The latitudinal circle at / = p/4 is indicated to
show where the match takes place. The dimensional heights may be recovered from the contour values in the
figures simply by multiplying by href = 8.0 · 103 m. All contour plots were made using a polar stereographic
projection of the Northern Hemisphere, described exhaustively by Snyder [29]. Of particular interest is the
slight pinching of crests and troughs for the Rossby–Haurwitz wave structure that is not evident in the line-
arized solution. This in turn forces the lower heights, and hence pressures, near the poles to extend further
towards the equator in the Rossby–Haurwitz solution. However, overall there is very close agreement between
both solution types.

5.2. Non-linear solution results

5.2.1. Results for j = 4, x = 1.25

Fig. 4 shows wavespeed c computed for j = 4 and x = 1.25, for each of the three measures of amplitude
Ae, Ap and Aave defined in Section 4.2. As indicated previously and in Section 3.3, dimensional wavespeeds
can be recovered from this diagram simply by multiplying values on the vertical axis by the quantity
cref = 2.4241 · 10�6 s�1. The figure is comprised of a total of 100 separately computed solutions. The trunca-
tion levels are M = 20 and N = 20 so that each series has a total of 400 coefficients, with a total of 1201
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unknowns in the Newton’s method algorithm (43). Results were initially computed at a lower truncation level
of M = N = 10 to ascertain convergence of the numerical method. Once convergence of the solution was
established, M and N were increased. The error tolerance on the L1 norm of the residual vector was set at
10�12, leading to average individual residual errors of the order of 10�15 or less, so that the governing equa-
tions were satisfied to the full accuracy possible on the computer. Solutions for the two truncation levels,
M = N = 10 and M = N = 20, were compared and the resulting series coefficients were found to agree to at
least 6 significant figures, providing evidence for the numerical convergence of the solutions calculated. In par-
ticular, bootstrapping was used to increase the truncation level beyond M = N = 20 for a random sample of
points on the solution curve, and in all cases these higher resolution solutions were found to differ negligibly
from those for M = N = 20, and, at least for small amplitude, from those of M = N = 10 as well.

The linearized solution is included and indicated with a dashed line in Fig. 4, showing that for small ampli-
tude waves the wavespeeds computed from both the linearized and the fully non-linear theories are essentially
equivalent. As the amplitude increases the wavespeed also increases, with the curve initially being tangential to
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the linearized result for small A but diverging from the linearized result and increasing more rapidly as A
becomes larger. This behaviour is as expected by analogy with other non-linear wave calculations for gravi-
tationally influenced incompressible fluids, notably those of Stokes [30], Schwartz [31] and Cokelet [32]. These
results, along with contributions from other key researchers in the field, are summarized in the review article
by Schwartz and Fenton [33].

As the amplitude continues to increase, the wavespeed increases more rapidly until, ultimately, a limiting
case is achieved numerically, where a slight curling over of the curve is observed. The physical explanation of
this limiting solution is not clear from this example computation. It is possible, for example, that a sharp crest
might be formed somewhere in the flow field, as in the previously mentioned water-wave case studied by
Stokes and later by Schwartz. Alternatively, it may be the case that the solution is topologically limited, as
found for gravity waves with surface tension by Schwartz and Vanden-Broeck [13], and Chen and Saffman
[34]. However, an analysis of the polar stereographic free surface contours at this limiting wavespeed and
amplitude combination, as shown in Fig. 5, suggests that no such behaviour is present.

We suggest, however, that some type of non-linear resonance behaviour occurs, which is not accessible to
this numerical scheme because of the complexity of the solution space and the implied sensitivity of Newton’s
method to the initial guess used. General evidence supporting this statement is presented in Section 5.2.2.
Indeed, it is suspected that the limiting solution indicated in Fig. 4 represents the largest amplitude solution
on one particular branch only, and that other solution types may exist with larger amplitudes and wavespeeds.
Attempts to find such larger waves were made using numerous methods. In particular the algorithm was chan-
ged so that the wavespeed became the forcing parameter in an attempt to look for faster progressive waves;
however, convergence of the residual vector was not achieved.

5.2.2. Results for j = 4, x = 1.0

The solution curves shown in Fig. 6 represent results obtained with the values j = 4 and x = 1.0; the results
consist of 143 separately converged solutions. The truncation levels were set at M = N = 15 with initial curves
mapped out using M = N = 10; little overall difference was observed between the two resolutions. The error
tolerance on the L1 norm of the residual vector was set at 10�12, leading to average individual residual errors
of the order of 10�15 or less. Like the previous example, the solution agrees well with the linearized result for
small amplitude waves and as A increases so does the wavespeed c. However, as opposed to the previous case
for x = 1.25, distinct discontinuous jumps are now evident, dividing the solution curves into separate
branches, between which no numerical solutions were able to be computed to adequate convergence. The indi-
vidual branches have been labelled in the figure and will be referred to subsequently as branches 1 through 5,
respectively.
11



Fig. 6. Wavespeed versus amplitude relationship for j = 4 and x = 1.0.
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Discrete branching of the solution, as evidenced in the present results, is characteristic of non-linear reso-
nance interaction in general, in which certain energy states of the system can be viewed as sympathetically
exciting the underlying wave motion, undergoing energy exchange between waves of different wavelengths
in the process. Non-linear resonance has been known to exist in complex non-linear wave propagation prob-
lems for some time now. In the context of gravity waves with surface tension Wilton [12] encountered key val-
ues of the capillary number at which resonance occurred. Schwartz and Vanden-Broeck [13], and Hogan [14–
16], confirmed this behaviour in detail, by numerically solving the exact equations, and found that multiple
simultaneous solution branches were possible. Forbes [17,18] also found resonant behaviour for surface waves
of large amplitude beneath an elastic sheet.

To understand how the resonance is occurring in this particular example we can view the system as being
forced by the parametrized amplitude through the Fourier coefficient H1,1. As H1,1 increases, A and c also
increase until a point is reached where some of the Fourier modes in the series expansions are naturally excited
by the forcing and can absorb energy via non-linear interactions. At this point resonance occurs, implying
the coexistence of two or more solutions with commensurate frequency and wavenumber. Thus at resonance
the Newton scheme has at least two solutions from which to choose and needs more information to make the
choice. We also note that is possible that the current restriction of c real precludes the Newton method uncov-
ering a complex conjugate pair of solutions brought about by the coalescence of frequencies. However, the
method used is still able to expose fundamental resonances of the system where full time dependence would
be necessary to discern the complete behaviour of the dynamical system.

The separate branches of the solution curve shown in Fig. 6 can be classified, at least partially, in terms of
the general associated height field structure and corresponding velocity vector field along each solution curve
segment. On branch 1 we conclude that at no point in the flow does the fluid move counter to the general
direction of the overall wave propagation direction and additionally that the only stagnation points in the flow
field are located at either of the two coordinate singularities, as expected. The free surface contours at the lim-
iting upper value of branch 1 are shown in Fig. 7. It is observed that the general character of these contours is
quite similar to those obtained with both the linearized model and Rossby–Haurwitz theory.

For solutions along branch 2, not much difference was observed between those along branch 1, with the
general flow properties of the previous paragraph applying equally well here. It is also important to emphasize
that the apparent intersection of branches 1 and 2 in the diagram is not a bifurcation point. Examination of
the Fourier coefficients in the neighbourhood of the overlap shows distinctly different solution structure for
each branch which fail to converge to a common set, despite the fact that the values of A and c for the



1.0
651.0

89
21.1

13
31.1

37
41.1

73
61.2

21
81.2

7

1.2942

1.
29

42

1.2942

1.
29

42

0

10

20

30
40

50
60

70
80

90 0

20

40

60

80100

120

140

160

180

200

220

240

260 280

300

320

340

Fig. 7. Free surface contours at end of branch 1 for j = 4, x = 1.0. The average amplitude is Aave ¼ 13:6732 (�) and the wavespeed is
c = 0.3978 (period of 75.41 days).

T.G. Callaghan, L.K. Forbes / Journal of Computational Physics 217 (2006) 845–865 859
two branches coincide at this point. It would be possible to prove this with a simple analysis of the determi-
nant of the Jacobian near the point of apparent intersection, as in Chen and Saffman [35]; however, the ease
with which the Newton method iterates through this region seems to suggest that no further investigation is
necessary with regard to the possible existence of a bifurcation. Additionally, the solution curve for the equa-
torial amplitude Ae does not contain the intersection, which confirms the presence of a resonance, instead of a
simple bifurcation.

Solutions on branches 3 and above reveal richer structures in terms of more stagnation points in the flow
field, reverse flow leading to localized circulation, and highly non-linear wave profiles. The main difference
between the lower solution branches 1 and 2 and the upper solution branches 3, 4 and 5 can be expressed
by examining the number of stagnation points in the flow field, disregarding the obvious polar stagnation
points that all solutions must have by definition of the series expansions themselves. It is evident that for solu-
tions on branches 3 and higher, all have stagnation points located symmetrically on the equator about the
coordinate lines g = 2np/j, for n = 0,1, . . . ,j � 1. The exact position of these stagnation points was noted
to change as the amplitude varied, although typically they were located quite close to the symmetry lines them-
selves. In between the two stagnation points the fluid was observed to flow counter to the general direction of
the progressive wave movement. The height field was examined for small-scale localized high-pressure cells at
these points of circulation, but none were found.

Fig. 8 shows a typical free surface contour plot for solutions along branches 3 and 4. The figure actually
shows the contours at the limiting upper value of branch 4 and so represents the maximum allowable ampli-
tude for waves on branch 4. It seems, from an analysis of the velocity fields and height contours, that the qual-
itative difference between waves on branches 3 and 4 is negligible. Nonetheless, a distinct gap was encountered
when trying to establish the continuity of the solution between branches 3 and 4. Further investigation is
needed to establish the key qualitative differences between these two branches, although this is both beyond
the scope and computational capability of the present work.

Of particular note is the way in which low-level polar heights, and hence pressures, are seen to move equa-
tor-ward for solutions along these branches. It is suspected that the limiting factor for wavespeeds and ampli-
tudes towards the upper end of branch 4 is directly related to the geometry of the low-level free surface
contours which are not able to bend inwards any further without creating an isolated cut-off low-pressure sys-
tem in the flow field. This statement is supported by the following analysis of branch 5 solutions.

The highly non-linear free surface height contours for the upper end of branch 5 are shown in Fig. 9. It is
immediately evident that solutions along this branch have the distinguishing feature of cut-off low-pressure
cells which are isolated from the general progressive wave structure. In addition to the already mentioned stag-
nation points in the flow field for waves on branches 3 and higher, more stagnation points are introduced for
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waves on the fifth branch, this time occurring close to the poles of the coordinate system rather than on the
equator. It was initially suspected that the centre of each cut-off low-pressure cell must be a stagnation point;
however, careful analysis of the velocity vector field did not confirm this. Nonetheless the velocity in the vicin-
ity of these cells is quite small compared to the rest of the flow field and can be described as circulatory about
the centre of each cell.

It is of interest to note that the stagnation points introduced for branch 5 solutions occur immediately
below each cut-off low-pressure cell as indicated in Fig. 10. Also shown are all previously mentioned stagna-
tion points as well as regions of circulation, labeled reverse flow. We can conclude that generally the flow is
seen to be geostrophic in the sense that the streamlines are nearly parallel to the isobars. This is clearly true in
the neighbourhood of the perturbed / = ±p/4 zonal flow contour that forms the basis of the numerical anal-
ysis in this section.

The fate of the solution curves past the end of branch 5 is still uncertain. Attempts were made to compute
more points beyond the limits shown but in all cases convergence was not achieved. It might be that our
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numerical method is not well suited to computing past points where the slope of the curve is nearly infinite, in
which case improved techniques are required to investigate the behaviour past the limit shown. Alternatively
this may be close to the maximum allowable amplitude of the system, imposed as a consequence of the finite
size and geometry of the sphere.

5.2.3. Results for j = 5, x = 1.25
It is of interest to study how the behaviour changes with an alternative value of the wave number j. We

now present results obtained with j = 5, using the same pair of values (x = 1.25 and x = 1.0) for the dimen-
sionless zonal flow super rotation; in this section we examine the case x = 1.25. Fig. 11 shows the computed
contours with corresponding velocity vector field at end of branch 5 forj= 4 , x = 1 4 0 . T h e a v e r a g e a m p l i t u d e i s A ave¼ 1 7 : 1 1 6 6 2 ( ffi ) a n d t h e w a v e s p e e d i s c = 0 4 4 0 1 6 ( p e r i o d o f 7 4 4 7 0 d a y s ) .1 . W a v e s p e e d v e r s u s a m p l i t u d e f o r j = 5 a n d x = 1 . 2 5 .g h a n , L . K . F o r b e s / J o u r n a l o f C o m p u t a t i o n a l P h y s i c s 2 1 7 ( 2 0 0 6 ) 8 4 5 – 8 6 5 8 6 1
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wave-speed versus amplitude relationship using a truncation of M = N = 20 for 203 individually converged
solutions. The error tolerance on the L1 norm of the residual vector was set at 10�12, leading to average indi-
vidual residual errors of the order of 10�15 or less.

The same general trend as for j = 4 is encountered here for j = 5, with the linearized solution being a good
approximation to the non-linear solution for small A and the wavespeed becoming increasingly greater as the
amplitude is increased. It appears that the use of j = 5 introduces a new phenomenon in the form of a local-
ized cubic structure located near c � 1.5807. It was initially suspected that this was in fact two distinct
branches separated by a resonance; however, it was possible to compute continuously through this region,
using a very small step size, without encountering any non-convergent solutions.

Therefore it seems that there are at least two explanations for this behaviour. The first is that there is in fact
a resonance occurring near the point of inflexion, but existing on such a small scale that we were unable to
detect in on any occasion. This does not seem very likely given the nature of the previous non-linear reso-
nances observed for the case j = 4, x = 1.0. The second explanation is that this is a feature of the dynamics
and forcing, in which energy exchange between certain wavelengths is taking place in such a manner as to
increase the overall amplitude while at the same time reducing the wave-speed. If so, this would represent a
type of damped resonance, but careful analytical work, beyond the scope of this study, would be needed to
identify the physical nature of the damping mechanism. Despite this localized reversal of the general trend
of the graph, no obvious distinguishing features are visible when we examine the free surface contours and
velocity vector field in the vicinity of this solution region. This fact seems to support the conjecture that sep-
arate resonance branches do not exist in this case, near c = 1.5807.

Two separate solution branches were found to exist towards the upper end of the curve when the limiting
wavespeed–amplitude combination was approached. Because it is not entirely clear from the figure, it needs to
be emphasized that the first branch terminates in the vicinity of c � 1.5812; thus the highest possible wave-
speed indicated is at the right end of branch 2. It is again unlikely that the apparent intersection of the two
branches is a sign of a simple bifurcation, for reasons outlined in the previous section.

For the left end of the second branch, numerical results have in fact been computed well beyond the ter-
mination point shown in the figure. However, it appears that they are of questionable value due to increasing
numerical error along that branch and have therefore not been shown. The ultimate fate of this upper branch
is not clear and may perhaps require alternative numerical techniques to reveal. In any event it is possible that
this branch is physically unstable, the system preferring the lower wavespeed over the higher one, and so
would generally not be observed in practice. It is even possible that a physical instability in this branch might
produce a numerical instability, since the numerical iteration process may be equivalent to stepping forward in
time (see, e.g. Ames [36]).

Typical free surface contours of the system are presented in Fig. 12, showing the nature of the solution
at the end of branch 1. In contrast to the highly non-linear structures computed at the end of the curve
for j = 4 and x = 1.0, these contours demonstrate the significantly smaller maximum amplitude for which
a convergent wavespeed was able to be calculated. In addition, no defining qualitative features of the
velocity field were found that could be used to distinguish easily between the two solution branches. It
is possible that more solution curves exist beyond those that are indicated; however, attempts to find such
solutions were not successful.

5.2.4. Results for j = 5, x = 1.0

For completeness we present results in this final section for j = 5 and x = 1.0. Fig. 13 shows the computed
solution curves obtained with the truncation level M = N = 15 for 100 individually converged solutions. The
error tolerance on the L1 norm of the residual vector was again set at 10�12. The general features of this figure
are less remarkable than those for the preceding set of results obtained with x = 1.25, although there is some
evidence for a similar localized cubic structure, this time in the vicinity of c = 0.99395. The severity of this
local cubic behaviour, however, is significantly less noticeable and does not substantially influence the general
increase of c with A. As in all previous solution curves presented, the results here agree well with the linearized
value of the wavespeed for small values of the amplitude.

Typical free surface contours at the right end of the one and only computed branch are shown in
Fig. 14. The waves shown are in general highly non-linear and it should be noted that the maximum pos-
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sible amplitude obtained with this slower zonal super rotation speed is larger than that obtained with
x = 1.25. No additional stagnation points in the flow field were observed, as in the previous case, and con-
sequently all fluid flow was found to be in the same direction as the direction of propagation of the pro-
gressive wave.

It is again suspected that there are in fact more solution branches in addition to the one shown in Fig. 13.
To support this statement we argue that the general nature of the flow field at the limiting computed value
seems to be rather well behaved with no clearly identifiable limiting features. Unsuccessful attempts were made
to bootstrap the limiting solutions to those on another higher branch; in all cases adequate convergence of the
residual vector was not achieved.
Fig. 13. Wavespeed versus amplitude for j = 5 and x = 1.01Free surface contours at end of branch 1 forj= 5, x= 1.25. The average amplitude isAave¼8: 3678 (�) and the wavespeed isc= 115812 (period of 18.97 days).
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6. Discussion and conclusion

In this paper we have presented a detailed picture of how the effects of non-linearity influence the relation-
ship existing between wavespeed and amplitude for progressive Rossby waves. The techniques utilized have
uncovered feature-rich dynamical properties of progressive-wave solutions of the incompressible shallow
atmosphere equations on a rotating sphere. In particular it was shown that non-linear resonance plays an
important and dominant role for waves with large amplitudes. The effect of resonance was observed to sep-
arate solutions of the system into disjoint regions, with similar solutions lying on the same solution branch in
wavespeed–amplitude space.

For slowly propagating progressive waves with longitudinal wavenumber j = 4 and zonal flow angular
speed x = 1.0, it was shown that if the amplitude forcing becomes large enough it is possible for the flow
to develop localized low-pressure cells in the mid-latitude regions. These types of extreme amplitude solutions
were accompanied by stagnation points in the flow field at locations other than the poles. In general it was
observed that for these highly non-linear waveforms the lower polar free-surface heights, and hence pressures,
and also the higher equatorial free-surface elevations, tended to be grossly distorted so that it was common for
contours originating near the equator or pole to be deformed towards regions well in excess of the mid-
latitudes.

The linearized wavespeed associated with this specific parameter configuration was c � 0.395. Thus for only
a slightly smaller value of the zonal flow parameter x, the linearized and associated non-linear wavespeeds
would be very close to zero, so that the Rossby wave would be approximately stationary with respect to
the surface of the Earth. We conjecture that the particular nature of the wavespeed–amplitude relationship
for stationary Rossby waves would not be dissimilar to that computed for the case j = 4 and x = 1.0. If this
is so it would imply the existence of highly distorted nearly stationary Rossby waves containing high pressure
ridges extending polewards from the equator, with cut-off low pressure cells in the mid-latitudes. This type of
atmospheric configuration may offer a partial explanation for the instigation of certain types of atmospheric
blocking events, with subsequent development of cut-off high-pressure cells near the mid-latitudes when full
time dependence is included in the model. This conjecture is supported by previous work of Verkley [37,38]
in which stationary modons in westerly background flows on a sphere are suggested as possible explanations
for blocking events.

In this conjecture nothing is implied as to how the dynamical system moves from one solution branch to the
next, nor is it expected that all the solution branches would be physically stable. However, if this proves to be
true then the highly non-linear solutions calculated in this work would support the idea that some forms of
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atmospheric blocking are primarily dynamical states which are accessible through appropriate forcing of the
atmospheric system.
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